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• Introduction: The Earth features are described by a set of discreet points which coordinates are necessary to be determined. Before the era of GPS technology, the horizontal coordinates of such points were usually read
from maps, which was associated with their low accuracy. Other quantities were measured at these points with an accuracy, quite high even for the present time. The improvement of the horizontal coordinates of such
points by using computational algorithms and additional available information leads to obtain much valuable data sets without the necessity of repeating long lasting and expensive measurement campaigns.

• Motivation: In 1957–1979 the whole territory of Poland was roughly homogeneously covered with gravity stations at which gravity was measured. The set of over 1 million gravimetric points surveyed at that time is up
to now extremely valuable and unique, and it is widely used in Earth sciences, especially in geophysics, geodesy, and geology. The locations of gravity stations were determined from printed maps. Thus, it can be expected
that the errors of horizontal coordinates of gravimetric stations are over hundred meters. In the case of the gravimetric points, for which the slopes of the terrain in their immediate vicinity exceeded 6 degrees, the slopes
were measured with an inclinometer in four or, in the case of a more complex topography, in eight directions in the radius of 100 m (Kryński, 2007). In recent decades, the information about the terrain heights has become
available in the form of digital terrain models (DTM). The DTM is a discrete representation of the terrain surface in the grid form. Within this investigation, the DTED2 model was used (NGA, 1996).

• Goal: The aim of this research is to match 3D surfaces, i.e. first one represented by the digital terrain model and the second one in the form of the so-called crosses simulating land slopes measured in four directions around
the gravity station, using approximations of Wasserstein distance.

• Main tool: From the mathematical point of view the problem reduces to comparing surfaces. We will discretize both surfaces and treat them as discrete measures. Our main tool is the Wasserstein distance, also known as
Monge-Kantorovich-Rubinstein distance, earth-mover’s distance or optimal transport distance. For example, ”we want to transport goods between producers and consumers, whose respective spatial distributions are
modelled by probability measures. The further producers and consumers are from each other, the more difficult will be our job” (2018, Villani).

Main tool: Optimal transport (Wasserstein distance) (1)

Problem: Imagine we have a pile of sand (represented as measure µ). What would be an efficient
way to move all of that mass into a second pile of sand (represented as measure ν)?

Fig. 1: Picture generated by Adobe Firefly AI

Let µ, ν be given probability measures. Let Π(µ, ν) be the set of all joint probability measures
on Rd × Rd whose marginals are µ, ν, i.e. for all subset B ⊂ Rd we have π(B × Rd) = µ(B)
and π(Rd ×B) = ν(B).

Wasserstein distance (for p = 1) is given by :

W (µ, ν) = inf
π∈Π(µ,ν)

∫
d(x, y)dπ(x, y).

We can say that Wasserstein is considered as a ”horizontal” distance (Santambrogio, 2015). For

discrete measures, i.e. µ =
n∑
i=1

αiδxi, ν =
n∑
i=1

βiδyi, formula W simplify to linear problem:

W (µ, ν) = min
Π


∑
i,j

Πi,jd(xi, yj)︸ ︷︷ ︸
work

: Πi,j ≥ 0,
∑
i

Πi,j = βj,
∑
j

Πi,j = αi

 .

Visualization of optimal transport (2)

Fig. 2: Two continuous measures

Fig. 3: Optimal transport, lighter color means more mass was transported

An example using the POT library (Flamary R., 2021). Fig. 3 provides visualizes the OT
(Optimal Transport) matrix G0, which represents the optimal transportation plan between two
distributions red and blue (Fig. 2). Each cell in the plot corresponds to the transportation
amount between an element in red and an element in blue. The color intensity in each cell
indicates the amount of mass being transported - lighter color means more mass was transported.

Goal: Matching two 3D surfaces (3)

First, we calculate Wasserstein distances for each set of crosses (160 points given in
4 perpendicular directions) on the DTM with approx 900 000 points. We are using
”scipy.stats.wasserstein distance” given in (SciPy Wasserstein)
Second, we are using linear assignment programming (SciPy linear) with the cost given by
Wasserstein distances, i.e.

min
∑
i

∑
j

Ci,jXi,j,

where C is cost matrix (size of 160 × 900000) and X [i, j] = 1 iff row i is assigned to column j.
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Results (4)

We want to find magenta crosses, solutions are given by green points. Wasserstein distance cost matrix is computed
about 20 times slower than Euclidean distance cost matrix, but the results have similarly bad solution location (green
points).

Fig. 4: Assignment programming with Wasserstein distance cost matrix Fig. 5: Assignment programming with Euclidian distance cost matrix

To simulate a data from field work we use a DTM of spatial resolution 300m × 300m. Based on this data crosses
have been calculated. For our solution we used a DTM of spatial resolution 30m × 30m. The test area is located near
Bielsko-Bia la in Poland.

Scaling of height (5)

Due to the much faster Euclidean distance cost matrix, now we look at some improvements to our method. Looking at
numerical values of longitude and latitude, those are more or less in the (0;0.3) range while the height is in the (0;1000)
range, so the solution fit is more likely to be skewed to minimize the height first (greater differences on z axis), and the
other coordinates later. Below you can see results with linear assignment programming with Euclidean distance as a
cost. We downscaled the z axis (height) by fixed values: 100 (Fig. 6) and 10000 (Fig. 7). Scaling by 100 gives the same
results as in Fig. 5. Scaling by 10000 to the same range as longitude and latitude gives much better results of solution
location (magenta crosses are covered by green solution points).

Fig. 6: Height (z axis) downscaled by 100 Fig. 7: Height (z axis) downscaled by 10000

Future work: In the future it is planned to apply the approach of the linear assignment programming with the cost
given by Wasserstein distances for improving the horizontal coordinates of gravimetric points measured in 1957–1979
using information about terrain slopes around those points and the modern digital terrain models.
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